111 | 0 | 33 |
下载次数 | 被引频次 | 阅读次数 |
本试验探究海水中常见阳离子对硫铝酸盐水泥(SAC)性能的影响规律,旨在为海工混凝土的研究及实际工程应用提供参考.根据海水中阳离子浓度配制1倍、1.5倍、2倍和2.5倍对应浓度的乙酸盐溶液作为拌和水,研究海盐阳离子种类及浓度对硫铝酸盐水泥砂浆的工作性能、物理性质、力学性能以及净浆凝结时间的影响,并通过微观试验分析水泥水化产物和微观结构.结果表明,钠离子和钙离子掺入缩短SAC凝结时间,钾离子对其凝结时间影响不大,镁离子显著延长SAC凝结时间,流动度变差.阳离子掺入降低水泥净浆孔隙率和吸水率,较高浓度倍数阳离子掺入不利于水泥砂浆的抗折强度,但有利于其抗压强度.
Abstract:The present experiment aimed to investigate the impact of common cations found in seawater on the properties of sulfoaluminate cement(SAC), with the objective of providing valuable insights for both research and practical applications in Marine concrete engineering.Acetate solutions were prepared with concentrations equivalent to 1x, 1.5x, 2x, and 2.5x the cation concentration in seawater, serving as mixing water for the investigation. This study focuses on examining the influence of sea salt cations on sulfoaluminate cement mortars,considering their impact on workability, physical properties, mechanical properties, and setting time. The goal is to comprehensively understand how the type and concentration of sea salt cations affect various aspects of SAC mortar performance. Additionally, microscopic tests were conducted to analyze the hydration products of cement and its microstructure. The results indicated that the inclusion of sodium and calcium ions reduced the setting time of SAC, while potassium ions had little effect on the setting time. Magnesium ions significantly extended the setting time and worsened flowability. The incorporation of cations reduced the porosity and water absorption rate of the cement paste. The addition of cations at higher concentration multipliers adversely affected the flexural strength of the cement mortar but was beneficial for its compressive strength.
[1]王燕谋,苏慕珍,张量.硫铝酸盐水泥[M].北京:北京工业大学出版社,1999.
[2]黄有强.海水对硫铝酸盐水泥混凝土性能的影响研究[D].武汉:武汉理工大学,2016.
[3]刘泽平,王传林,张宇轩,等.海水和矿物掺合料对硫铝酸盐水泥砂浆性能的影响[J].硅酸盐通报,2022(4):1245-1255.
[4] WEERDT D K,ORSáKOVáD,GEIKER M. The impact of sulphate and magnesium on chloride binding in Portland cement paste[J]. Cement and Concrete Research,2014,65:30-40.
[5] GUERRERO A,GO?I S,ALLEGRO V R. Effect of temperature on the durability of class C fly ash belite cement in simulated radioactive liquid waste:Synergy of chloride and sulphate ions[J]. Journal of Hazardous Materials,2008,165:903-908.
[6] SOTIRIADIS K,NIKOLOPOULOU E,TSIVILIS S. Sulfate resistance of limestone cement concrete exposed to combined chloride and sulfate environment at low temperature[J]. Cement and Concrete Composites,2012,34(8):903-910.
[7] AARDT V P J H. Deterioration of cement products in aggressive media[M]. Fourth International Symposium on the Chemistry of Cement. Washington:National Bureau of Standards. 1962:835-853.
[8] EWERS N. Effect of magnesium chloride brine on road concrete[J]. Baustoffindustrie,1967:281-283.
[9] KUNTHER W,LOTHENBACH B,Scrivener K L. Deterioration of mortar bars immersed in magnesium containing sulfate solutions[J]. Materials and Structures,2013,46(12):2003-2011.
[10] SURRYAVANSHI A K,SCANTLEBURY J D,LYON S B. Mechanism of Friedel's salt formation in cements rich in tri-calcium aluminate[J]. Cement and Concrete Research,1996,26(5):717-727.
[11]岳青滢,丁宁,王石付,等.阳离子类型对混凝土固化氯离子能力的影响机理[J].混凝土,2014(1):12-16+20.
[12]伍勇华,李国新,申富强,等.无机盐早强剂对高效减水剂与水泥相容性的影响[J].四川建筑科学研究,2006(6):166-169.
[13]李中华,冯树荣,苏超,等.海水化学成分对水泥基材料的侵蚀[J].混凝土,2012(5):8-11.
[14] TANG S,SJ魻BERG M,BREDENBERG J. The zeta-potential of cement[J]. Cement and Concrete Research,2000,30(9):1445-1451.
[15]李小生.海水中镁离子对水泥基材料侵蚀机理研究[D].武汉:武汉理工大学,2021.
[16] DUXSON P,PROVIS J L,LUKEY G C,et al. The role of inorganic polymer technology in the development of‘green concrete’[J]. Cement and Concrete Research,2007,37(12):1590-1597.
[17]郭俊萍,肖忠明,黄芳,等.海水拌合硫铝酸盐水泥性能及机理分析[J].水泥,2017(9):7-10.
基本信息:
DOI:
中图分类号:P75;TU528
引用信息:
[1]关嘉琪,王传林,郑跃群等.海盐阳离子对硫铝酸盐水泥性能的影响研究[J].汕头大学学报(自然科学版),2024,39(03):48-60.
基金信息:
广东省自然科学基金资助项目(2023A1515012727); 广东省普通高校青年创新人才资助项目(2021KQNCX021)