nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg qikanlogo popupnotification paper
2024 04 v.39;No.123 13-23
拟拓扑向量空间的运算及其范畴的双完备性
基金项目(Foundation): 国家自然科学基金资助项目(11971287)
邮箱(Email):
DOI:
中文作者单位:

闽南师范大学数学与统计学院;

摘要(Abstract):

以Diffeological向量空间赋予D拓扑为背景,杨忠强和胡泽英定义了拟拓扑向量空间,即在向量空间上赋予一个拓扑使得加法运算是分离变量连续的,同时数乘运算是连续的.本文在此基础上研究了拟拓扑向量空间的子空间、乘积空间和商空间,并给出了拟拓扑向量空间范畴的定义,进一步证明了该范畴的双完备性.

关键词(KeyWords): 拟拓扑向量空间;;子空间;;乘积空间;;商空间;;范畴;;完备性;;余完备性
参考文献 [1] BURGIN M. Semitopological vector spaces and hyperseminorms[J]. Theory and Applications of Mathematics Computer Science,2013,3(2):1-35.
[2] SOURIAU J M. Groupesdiffé rentiels[M]. Berlin:Springer,Lecture Notes in Math,1980.
[3] IGLESIAS-ZEMMOUR P. Diffeology[M]. America:American Mathematical Society,2013.
[4] WU E,YANG Z. Topology on diffeological vector spaces[EB/OL].[2024-04-19]. http://ar Xiv:2205.09562v1.
[5] YANG Z,HU Z. Quasitopological vector spaces[J]. Topology and its Applications,2024:108860.
[6]詹妍,赵浩. Diffeological空间范畴中光滑映射的分解[J].数学杂志,2021,41(3):237-246.
[7]贺伟.范畴论[M].北京:科学出版社,2006.
[8]王兵山,毛晓光,刘万伟.高级范畴论[M].北京:清华大学出版社,2012.
[9]李丹阳,汤建钢. Riesz模范畴的完备性和余完备性[J].新疆师范大学学报(自然科学版),2024,43(1):13-21.
[10]刘培德.拓扑线性空间与算子谱理论[M].北京:高等教育出版社,2013.
[11] KELLY J L,NAMIOKA I,DONOGHUE W F,et al. Linear topological spaces[M]. Berlin:Springer Berlin Heidelberg,1963.

基本信息:

DOI:

中图分类号:O189.11

引用信息:

[1]杨忠强,方亚静.拟拓扑向量空间的运算及其范畴的双完备性[J].汕头大学学报(自然科学版),2024,39(04):13-23.

基金信息:

国家自然科学基金资助项目(11971287)

检 索 高级检索