19 | 0 | 8 |
下载次数 | 被引频次 | 阅读次数 |
滨海火电厂循环水管道中栖息的微生物在厌氧发酵下会产生大量硫化氢(H2S)等有毒有害气体,对设备和人员的安全构成了严重威胁,明确循环水管道中产生H2S的微生物群落结构及其代谢途径,对开展有毒有害气体的防治工作具有重要的指导意义.本研究以汕头华能海门电厂的循环水管道为研究对象,探究循环水管道中的微生物群落结构及其产生H2S的代谢途径.结果显示,循环水管道中以Rhodobacteraceae、Flavobacteriaceae、未分类的Gammaproteobacteria、Roseobacteraceae和Actinomarinaceae等微生物为主,循环水经过脱硫和曝气流程后微生物群落结构发生改变,Sulfurimonadaceae和未分类的Hydrogenovibrio的相对丰度明显上升.典型相关分析显示温度和pH显著影响循环水管道中的微生物群落结构(P<0.01,R2>0.1).宏基因组数据分析显示循环水管道中的微生物具有通过同化硫酸盐还原途径、异化硫酸盐还原途径以及直接还原高半胱氨酸、甲硫醇、亚硫酸盐和硫单质产生H2S的能力.本研究表明了滨海火电厂循环水管道中的微生物群落组成和硫酸盐还原菌的占比,并明晰了循环水管道中微生物产生H2S的代谢途径,为滨海火电厂制定循环水管道微生物产生H2S等有毒有害气体的防治策略提供理论依据.
Abstract:Diverse groups of microorganisms reside in the circulating water pipelines of coastal thermal power plants and these microbes can produce a lot of toxic and harmful gases such as hydrogen sulfide(H2S) in anaerobic environment, posing a serious threat to on-site workers and normal operation. Clearly understanding the microbial community structure and their metabolic pathways for hydrogen sulfide production in circulating water pipelines of coastal thermal power plants is of great significance for carrying out the preventive works for toxic and harmful gases.This study focused on the circulating water pipelines of the Huaneng Haimen Power Plant in Shantou, China to investigate the microbial community structure and the metabolic pathway of H2S production. The results showed that the dominant taxa in the circulating water pipelines included Rhodobacteraceae, Flavobacteriaceae, unclassified Gammaproteobacteria, Roseobacteraceae, and Actinomarinaceae. The microbial community structure of circulating water underwent significant changes following desulfurization and aeration, with a notable increase in the relative abundance of Chlorimonadaceae and unclassified Hydrogenovibrio. Canonical correspondence analysis revealed that temperature and p H exerted the significant effects on the microbial community structure in circulating water pipelines(P<0.01, R2>0.1). Metagenomic data analysis demonstrated that microorganisms in circulating water pipelines possessed the capability to produce H2S through various pathways including assimilating sulfate reduction, dissimilating sulfate reduction, and direct reduction of homocysteine, methanethiol, sulfite, and sulfur. This study identified the primary microbial composition and the proportion of sulfate-reducing bacteria in the circulating water pipelines of coastal thermal power plants, as well as elucidated the metabolic pathways involved in H2S production. These findings provide a theoretical support for the risk prevention and control of toxic and harmful gases generated in the circulating water pipelines of coastal thermal power plants.
[1]何萍.滨海电厂循环冷却水系统海生物预防性控制运行探讨[J].应用能源技术,2016,12:30-32.
[2]张声强,缪飞,黄奇然.循环冷却水系统海生物污损化学控制[J].广东化工,2013,40:101-102.
[3]朱志梅.养鸡饮水系统生物膜形成过程及预防措施[J].北方牧业,2023,1:26.
[4]郝圣楠.热电联产二次网供热系统生物粘泥去除技术应用[J].区域供热,2022,3:115-119.
[5]ZHANG Z,ZHANG C,YANG Y,et al.A review of sulfate-reducing bacteria:Metabolism,influencing factors and application in wastewater treatment[J].Journal of Cleaner Production,2022,376:134109.
[6]郑耿桦,尤亮,冯庭有,等.滨海火电厂循环水管道硫化氢气体的产生、危害及预防措施[J].汕头大学学报(自然科学版),2024,39:73-80.
[7]DOUJAIJI B,AL-TAWFIQ J A.Hydrogen sulfide exposure in an adult male[J].Annals of Saudi Medicine,2010,30:76-80.
[8]胥文敬.城市污水排水系统中H2S的溢出规律研究[D].兰州:兰州理工大学,2014.
[9]郑耿桦,尤亮,冯庭有,等.微生物参与滨海火电厂循环水管道中有毒有害气体产生的过程与机制[J].应用与环境生物学报,2025,31:1-10.
[10]中华人民共和国环境保护部.HJ501-2009水质总有机碳的测定燃烧氧化-非分散红外吸收法[S].北京:中国环境科学出版社,2009.
[11]中华人民共和国环境保护部.HJ636-2012水质总氮的测定碱性过硫酸钾消解紫外分光光度法[S].北京:中国环境科学出版社,2012.
[12]伍绍双,许家宝.ICP测定泡焦水中钾、钠、钙、镁、硫含量[J].南方金属,2024,4:34-37.
[13]HUSE S M,DETHLEFSEN L,HUBER J A,et al.Exploring microbial diversity and taxonomy using SSU r RNA hypervariable tag sequencing[J].PLo S Genetics,2008,4:e1000255.
[14]MARTIN M.Cutadapt removes adapter sequences from high-throughput sequencing reads[J].EMBnet Journal,2011,17:10-12.
[15]T,SALZBERG S L.FLASH:Fast length adjustment of short reads to improve genome assemblies[J].Bioinformatics,2011,27:2957-2963.
[16]CALLAHAN B J,MCMURDIE P J,HOLMES S P.Exact sequence variants should replace operational taxonomic units in marker-gene data analysis[J].The ISME Journal,2017,11:2639-2643.
[17]YOON S H,HA S M,KWON S,et al.Introducing Ez Bio Cloud:A taxonomically united database of16S r RNA gene sequences and whole-genome assemblies[J].International Journal of Systematic and Evolutionary Microbiology,2017,67:1613-1617.
[18]SUN L,JI S,YE J.Canonical correlation analysis for multilabel classification:a least-squares formulation,exten-sions,and analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33:194-200.
[19]URITSKIY G V,DIRUGGIERO J,TAYLOR J.Meta WRAP-a flexible pipeline for genome-resolved metagenomic data analysis[J].Microbiome,2018,6:158.
[20]郭鲁钢,王海增,朱培怡,等.海水脱硫技术现状[J].海洋技术,2006,25:10-14.
[21]毛卫兵,杨小华,汤东升,等.海水脱硫直流供水冷却系统应用研究[J].给水排水,2012,38:57-59.
[22]HUANG L,WANG X,CHI Y H,et al.Rhizosphere bacterial community composition affects cadmium and arsenic accumulation in rice(Oryza sativa L.)[J].Ecotoxicology and Environmental Safety,2021,222:112474.
[23]WANG X Q,ZHAO Y G,WANG J P,et al.Characteristics of sulfide removal by Hydrogenovibrio thermophilus strain TT in mariculture system[J].Journal of Ocean University of China,2019,18:1185-1192.
[24]JIANG L J,LYU J,SHAO Z Z.Sulfur metabolism of Hydrogenovibrio thermophilus strain S5 and its adaptations to deep-sea hydrothermal vent environment[J].Frontiers in Microbiology,2017,8:2513.
[25]KOZIAEVA V V,SOROKIN D Y,KOLGANOVA T V,et al.Magnetospirillum sulfuroxidans sp.nov.,capable of sulfur-dependent lithoautotrophy and a taxonomic reevaluation of the order Rhodospirillales[J].Systematic and Applied Microbiology,2023,46:126406.
[26]王堑傧,郁梦雅,魏宠,等.西北某油田一株硫化氢产生菌的筛选及其活性抑制[J].河南科学,2021,39:905-913.
[27]HIDALGO R B,CLEENWERCK I,BALBOA S,et al.Vibrio breoganii sp.nov.,a non-motile,alginolytic,marine bacterium within the Vibrio halioticoli clade[J].International Journal of Systematic and Evolutionary Microbiology,2009,59:1589-1594.
[28]CAO Q,LIU X,WANG Q,et al.Rhodobacteraceae methanethiol oxidases catalyze methanethiol degradation to produce sulfane sulfur other than hydrogen sulfide[J].m Bio,2024,15:e0290723.
[29]ROMANENKO L,OTSTAVNYKH N,KURILENKO V,et al.Marinobacterium sedimentorum sp.nov.,isolated from the bottom sediments of the Okhotsk Sea[J].Diversity,2022,14:944.
基本信息:
DOI:
中图分类号:TM621
引用信息:
[1]张峰,冯庭有,尤亮等.滨海火电厂循环水管道的微生物群落结构及其产生硫化氢的代谢途径研究[J].汕头大学学报(自然科学版),2025,40(02):14-28.
基金信息:
华能集团科技项目“HNKJ22-H68滨海电厂海水系统硫化氢生成机理与防治策略研究”