2024 04 v.39;No.123 65-73
基于集成机器学习算法的Android恶意软件创新预测方法研究
基金项目(Foundation):
2023年甘肃省科学技术厅省级科技计划项目(23JRZK0524);;
2022年校级重点教学改革项目(JXGG2022001)
邮箱(Email):
1154524787@qq.com.;
DOI:
中文作者单位:
陇南师范学院;
摘要(Abstract):
恶意软件旨在破坏、禁用或控制计算机系统. Android恶意软件专门针对Android操作系统,以泄露机密信息和破坏系统为目的.文献显示相关领域已进行了多次尝试来检测Android恶意软件.然而,这些工作无法自动检测恶意软件,而且大多数都是基于签名的,无法检测恶意软件的新变种.本研究中,探索了不同的算法,以获得恶意软件预测的最佳算法,并获得有助于本研究有效预测恶意软件的最佳特征集.从本研究的分析中,已经看到,在预测恶意软件方面,集成方法比传统的机器学习算法要好.本研究使用LGBM创新算法将特征数量从215个减少到100个,精准率达到99.50%.此外,本研究使用只有55个特征的随机森林获得了99.17%的精准度.
关键词(KeyWords):
Android;;恶意软件;;机器学习;;特征选择;;合奏学习;;Drebin数据集
131 | 0 | 9 |
下载次数 | 被引频次 | 阅读次数 |
参考文献
[1] 199IT. Counterpoint:华为HarmonyOS系统在中国的市场份额已经达到8%[EB/OL].[2024-4-10]. http://www.199it.com/archives/1604885.html
[2] 199IT.卡巴斯基:2023年Q1移动设备攻击报告[EB/OL].[2024-4-12]. http://www.199it.com/archives/1623195.html
[3] KHARIWAL K,SINGH J,ARORA A. IPDroid:android malware detection using intents and permissions[C]//2020 Fourth World Conference on Smart Trends in Systems Security and Sustainablity(WorldS4).2020.
[4]王季,景齐,高建波,等. SEdroid:一种使用选择性集成学习的强大安卓恶意软件检测器[J]. IEEE无线通信与网络会议(WCNC),2020:19-22.
[5] MAHINDRU A,SANGAL A L. MLDroid-framework for Android malware detection using machine learning techniques[J]. Neural Computing&Applications,2021(10):33.
[6]张雪芹,王逸璇,赵敏.基于深度学习的Android恶意软件动态检测[J].计算机工程与设计,2024,45(1):10-16.
[7] WANG W,GAO Z,ZHAO M,et al. DroidEnsemble:detecting android malicious applications with ensemble of string and structural static features[J]. IEEE Access,2018,6:31798-31807.
[8] FAHAD A,KHALED E. Android malware permission-based multi-class classification using extremely randomized trees[J]. IEEE Access,2018,6:76217-76227.
[9] CHANG W L,SUN H M,WU W. An android behavior-based malware detection method using machine learning[J]. IEEE International Conference on Signal Processing,Communications and Computing(ICSPCC),2016:1-4.
[10] YUAN Z L,LU Y Q,WANG Z G,et al. Droid-sec:deep learning in android malware detection[J].Computer Communication Review,2014,44(4):371-372.
[11] KUMARAN M,LI W J. Lightweight malware detection based on machine learning algorithms and the android manifest file[C]//IEEE Mit Undergraduate Research Technology Conference. IEEE,2016:1-3.
[12] SONALI K,PRAVIN K,VILAS T. Static analysis of android permissions and sms using machine learning algorithms[J]. International Journal of Computer Applications,2018,182(16):22-27.
[2] 199IT.卡巴斯基:2023年Q1移动设备攻击报告[EB/OL].[2024-4-12]. http://www.199it.com/archives/1623195.html
[3] KHARIWAL K,SINGH J,ARORA A. IPDroid:android malware detection using intents and permissions[C]//2020 Fourth World Conference on Smart Trends in Systems Security and Sustainablity(WorldS4).2020.
[4]王季,景齐,高建波,等. SEdroid:一种使用选择性集成学习的强大安卓恶意软件检测器[J]. IEEE无线通信与网络会议(WCNC),2020:19-22.
[5] MAHINDRU A,SANGAL A L. MLDroid-framework for Android malware detection using machine learning techniques[J]. Neural Computing&Applications,2021(10):33.
[6]张雪芹,王逸璇,赵敏.基于深度学习的Android恶意软件动态检测[J].计算机工程与设计,2024,45(1):10-16.
[7] WANG W,GAO Z,ZHAO M,et al. DroidEnsemble:detecting android malicious applications with ensemble of string and structural static features[J]. IEEE Access,2018,6:31798-31807.
[8] FAHAD A,KHALED E. Android malware permission-based multi-class classification using extremely randomized trees[J]. IEEE Access,2018,6:76217-76227.
[9] CHANG W L,SUN H M,WU W. An android behavior-based malware detection method using machine learning[J]. IEEE International Conference on Signal Processing,Communications and Computing(ICSPCC),2016:1-4.
[10] YUAN Z L,LU Y Q,WANG Z G,et al. Droid-sec:deep learning in android malware detection[J].Computer Communication Review,2014,44(4):371-372.
[11] KUMARAN M,LI W J. Lightweight malware detection based on machine learning algorithms and the android manifest file[C]//IEEE Mit Undergraduate Research Technology Conference. IEEE,2016:1-3.
[12] SONALI K,PRAVIN K,VILAS T. Static analysis of android permissions and sms using machine learning algorithms[J]. International Journal of Computer Applications,2018,182(16):22-27.
基本信息:
DOI:
中图分类号:TP309;TP181
引用信息:
[1]贺军忠,安明明.基于集成机器学习算法的Android恶意软件创新预测方法研究[J].汕头大学学报(自然科学版),2024,39(04):65-73.
基金信息:
2023年甘肃省科学技术厅省级科技计划项目(23JRZK0524);; 2022年校级重点教学改革项目(JXGG2022001)
暂无数据