华能汕头海门发电有限责任公司;汕头大学,省市共建海洋灾害预警与防护广东省重点实验室;
鱼类堵塞滨海电厂循环水通道滤网或大规模进入循环水通道,将对滨海电厂的运行造成严重的影响,导致重大经济损失.为了解滨海电厂循环水通道中鱼类群落的生物多样性及其时空演变规律,发现循环水通道中的潜在致灾物种,我们在夏季(6、7月)、秋季(9、10月)、冬季(1月)分别利用环境DNA(Environmental DNA,eDNA)宏条形码技术对汕头海门电厂循环水通道5个位点的鱼类生物多样性进行分析.我们从69份eDNA样品中一共检测出32目,71科,138属,149种鱼类,其中鲱形目鱼类丰度最高,占鱼类read总数的24.85%.此外,相对丰度较高的物种为花莲沙丁鱼、褐菖鲉、斯氏凡鲻、白点蓝子鱼、褐篮子鱼、长头小沙丁鱼、裴济小沙丁鱼、平鲷、鲻鱼、岛侧带小公鱼等.各月份的鱼类Alpha多样性差异较大,9月份的Shannon指数、Simpson指数、物种数量和Chao1指数均是各个月份中最低的,前两者从夏季到冬季大体呈现V型变化,先下降再提升;后两者则在1月份再次下降.每个月份的优势物种组成呈现明显变化,在夏季,多种鲱科鱼类成为优势物种,这是一种常见的滨海电厂致灾鱼类物种,应当引起关注.本研究证明了eDNA技术用于监测滨海电厂鱼类多样性及其时空演变规律的可行性,揭示了滨海电厂冷却循环水系统中鲱科鱼类带来的风险,为控制和管理海洋鱼类对滨海电厂安全运行的影响提供基础数据支持和科学依据.
33 | 0 | 10 |
下载次数 | 被引频次 | 阅读次数 |
[2]何萍.滨海电厂循环冷却水系统海生物预防性控制运行探讨[J].应用能源技术,2016(12):30-32.
[3]王莉.滨海电厂循环冷却系统中海生物污染的控制[J].化工管理,2017(2):255+257.
[4]宋伟伟,贾思洋,周晓光,等.滨海电厂循环水系统海生物污染防治[J].全面腐蚀控制,2013,27(3):17-19+67.
[5]夏守庆,陈春玲.海水冷却系统海生物污染的控制措施[J].华电技术,2017,39(5):49-51+54+78.
[6]张广文,潘春生.电解海水制氯技术在火电厂的应用[J].东北电力技术,2006(9):35-37.
[7]李靖锋,王凌,袁宝泉,等.滨海直流冷却电站海生物污染问题研究[J].清洗世界,2022,38(11):131-133.
[8] DIXON D. Best management practices manual for preventing cooling water intake blockages[R]. Palo Alto:EPRI,2021.
[9] LIN H,ZHANG S,CAO R,et al. A review on the risk,prevention and control of cooling water intake blockage in coastal nuclear power plants[J]. Nuclear Engineering and Technology,2024,56(2):389-401.
[10]张利茹,BENG K C,CORLETT R T.环境DNA技术及其应用[J].水利信息化,2023(4):97-98.
[11]刘科均,赖锡勋,向劲,等.环境DNA技术在水域环境中的应用进展[J].水产养殖,2023,44(11):16-21+27.
[12] YANG N,JIN D,GOVINDARAJAN F A. Applying environmental DNA approaches to inform marine biodiversity conservation:The case of the Ocean Twilight Zone[J]. Marine Policy,2024,165:106-151.
[13]程云山,任艺晨,席贻龙,等.基于环境DNA技术和形态学鉴定的浮游植物多样性比较[J/OL].[2024-05-25]. http://kns.cnki.net/kcms/detail/32.1331.p.20240517.0904.002.html.
[14] WANG S,WU H D,SONG D Y,et al. Application of environmental DNA metabarcoding to identify fish community characteristics in subtropical river systems[J]. Ecology and Evolution,2024,14(5):e11214-e11214.
[15] DRIESSCHE V C,EVERTS T,NEYRINCK S,et al. Environmental DNA metabarcoding reflects spatiotemporal fish community shifts in the Scheldt estuary[J]. The Science of the Total Environment,2024:173242.
[16] GREGORY J C,JUSTIN K,JESSE S,et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods,2010,7(5):335-6.
[17] EDGAR R C. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods,2013,10(10):996-998.
[18]张雨桐.海洋变暖对鱼类的影响研究进展[J].生物化工,2023,9(3):217-222.
[19]代丽,姜新舒,张文杰,等.滨海电厂取排水对鱼类资源的影响机制及应对策略[J].给水排水,2023,59(S1):301-307.
[20]张浩博,王晓艳,陈治,等.基于环境DNA metabarcoding的舟山及其邻近海域鱼类空间分布格局的初步研究[J/OL].[2024-07-07]. http://kns.cnki.net/kcms/detail/31.1283.S.20221226.1142.003. html.
[21] MAES J,TURNPENNY H W A,LAMBERT R D,et al. Field evaluation of a sound system to reduce estuarine fish intake rates at a power plant cooling water inlet[J]. Journal of Fish Biology, 2004, 64(4):938-946.
[22] NOATCH M R,SUSKI C D. Non-physical barriers to deter fish movements[J]. Environmental Reviews,2012,20(1):71-82.
[23] HADDERINGH R H,STOEP J W,HABRAKE N J. Deflecting eels from water inlets of power stations with light,Irish Fish[J]. Environmental Science and Engineering,1992(36):78-87.
[24] SIMONE D,STEFANO M. Sifting environmental DNA metabarcoding data sets for rapid reconstruction of marine food webs[J]. Fish and Fisheries,2021,22(4):822-833.
[25] EGELYNG E S,FELIPE T, GULDBERG T F,et al. Using vertebrate environmental DNA fro m seawater in biomonitoring of marine habitats[J]. Conservation Biology,2020,34(3):697-710.
[26] ZHANG X W. Environmental DNA shaping a new era of ecotoxicological research[J]. Environmental Science&Technology,2019,53(10):5605-5612.
基本信息:
DOI:
中图分类号:TM62;Q958.8
引用信息:
[1]郑耿桦,尤亮,冯庭有等.环境DNA揭示滨海电厂循环水通道中鲱科鱼类带来的潜在风险[J].汕头大学学报(自然科学版),2025,40(01):13-23.
基金信息:
华能集团科技项目(HNKJ22-H68)