nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 04, v.39 49-64
基于响应面-遗传算法的文丘里蒸汽疏水阀结构优化设计
基金项目(Foundation): 长沙理工大学校企合作研究项目(202430102)
邮箱(Email):
DOI:
摘要:

为优化文丘里蒸汽疏水阀内件结构,提高其自适应调节性能,以最大疏水范围比为目标,采用Central-Composite响应面设计和遗传算法对文丘里蒸汽疏水阀内件结构进行优化,并对优化前后结构进行分析.结果表明,通过代理模型进行优化设计,大大降低了有限元计算量,提升了优化效率,利用遗传算法得到最佳结构参数为:收缩角为20.8°、喉部长度为4.3 mm、扩散角为4.6°.收缩角、喉部长度和扩散角三个几何参数相互关联,扩散角是影响疏水范围比的最有效参数,其中扩散角对疏水范围比具有负向影响,喉长和收缩角对疏水范围比具有非线性影响,且收缩角对疏水范围比的影响最小.

Abstract:

In order to optimize the internal structure of the Venturi steam trap and improve its adaptive adjustment performance, the Central-Composite response surface model and genetic algorithm were used to optimize the internal structure of the Venturi steam trap, aiming at the maximum hydrophobic range ratio of Venturi steam trap. The structure was analyzed before and after optimization. The results show that the optimization design by proxy model greatly reduces the amount of finite element calculation and improves the optimization efficiency. The optimal structural parameters obtained by genetic algorithm are as follows:the contraction angle is 20.8°, the throat length is 4.3 mm, and the diffusion angle is 4.6°. The three geometric parameters of contraction angle, throat length and diffusion angle are interrelated.The diffusion angle is the most effective parameter affecting the hydrophobic range ratio. The diffusion Angle has a negative effect on the hydrophobic range ratio. Throat length and contraction Angle have nonlinear influence on the hydrophobic range ratio. The contraction Angle is the smallest parameter affecting the hydrophobic range ratio.

参考文献

[1]董波,罗景泉,张家辉,等.结构参数对文丘里管空化性能影响的数值模拟研究[J].轻工机械,2021,39(5):37-42.

[2] SAHARAN V K. Computational study of different Venturi and orifice type hydrodynamic cavitating devices[J]. Journal of Hydrodynamics,2016,28(2):293-305.

[3] SUN Y Q,NIU W Q. Effects of Venturi structural parameters on the hydraulic performance[J]. Northwest A&F,2010,38(2):211-218.

[4] ZHANG J X. Analysis on the effect of Venturi tube structural parameters on fluid flow[J]. AIP Advances,2017,7(6):065315.

[5] ABBASI E,SAADAT S,JASHNI A K,et al. A novel method for optimization of slit Venturi dimensions through CFD simulationand RSM design[J]. Ultrasonics Sonochemistry,2020,67:105088.

[6]谷海涛,林扬,胡志强,等.基于代理模型的水下滑翔机机翼设计优化方法[J].机械工程学报,2009,45(12):7-14.

[7]戴睿,张岳,王惠军,等.基于多物理场近似模型的高速永磁电机多目标优化设计[J].电工技术学报,2022,37(21):5414-5423.

[8]刘基盛,计良,李威,等.基于多代理模型的离心叶轮高效优化设计方法[J].中国机械工程,2023,34(8):899-907.

[9]谢冰川,张岳,刘光伟,等.基于小样本迁移代理模型的高速永磁电机应力优化研究[J].中国电机工程学报,2024,44(13):5362-5374.

[10]陈晨铭,郭雪岩,常林森.基于BP神经网络代理模型的翼型优化及领域自适应研究[J].动力工程学报,2022,42(7):657-663.

[11] LI D Y,MIAO B X,LI Y,et al. Numerical study of the hydrofoil cavitation flow with thermodynamic effects[J]. Renewable Energy,2021,169:894-904.

[12] MCLINDEN M O,KLEIN S A,LEMMON E W,et al. NIST standard reference database 23:NIST thermodynamic and transport properties of refrigerants and refrigerants mixtures-refprop,version6.0[Z].National Institute of Standard and Technology,1998.

[13]时素果,王国玉.不同流体介质的空化热力学效应[J].船舶力学,2021,25(3):263-272.

[14]王巍,林茵,王晓放,等.高温条件下热力学效应对空化的影响[J].排灌机械工程学报,2014,32(10):835-839.

[15]季斌,罗先武,吴玉林,等.考虑热力学效应的高温水空化模拟[J].清华大学学报(自然科学版),2010,50(2):262-265.

[16] ZHOU X,ZHI X Q,GAO X,et al. Evolution and hazard of liquid nitrogen cavitation in cryogenic shutoff valves[J]. Journal of Zhejiang University-Science A(Applied Physics&Engineering), 2022,23(2):101-118.

[17] NATARAJAN E,PONNAIAH G P. Optimization of process parameters for the decolorization of reactive blue 235 dye by barium alginate immobilized iron nanoparticles synthesized from aluminum industry waste[J]. Environmental Nanotechnology,Monitoring&Management,2017,7:73-88.

基本信息:

DOI:

中图分类号:TK17;TP18

引用信息:

[1]卢绪祥,丁海霞,刘瑞等.基于响应面-遗传算法的文丘里蒸汽疏水阀结构优化设计[J].汕头大学学报(自然科学版),2024,39(04):49-64.

基金信息:

长沙理工大学校企合作研究项目(202430102)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文