2024 03 v.39;No.122 73-80
滨海火电厂循环水管道硫化氢气体的产生、危害及预防措施
基金项目(Foundation):
华能集团科技项目(HNKJ22-H68)“滨海电厂海水系统硫化氢生成机理与防治策略研究”
邮箱(Email):
wanghui@stu.edu.cn;
DOI:
中文作者单位:
华能汕头海门发电有限责任公司;广东省海洋生物技术重点实验室,汕头大学理学院;汕头大学工学院;
摘要(Abstract):
滨海火电厂循环水管道中硫化氢等有毒有害气体的积累不仅会影响冷却系统的正常运行,还会对周边环境及现场作业人员的健康造成严重危害,是困扰火电厂安全运行的重大难题.因此,研究火电厂循环水管道中硫化氢的产生机制并针对性提出防控措施,是火电厂亟需解决的科学问题.基于此,本文从滨海火电厂循环水管道中如何产生硫化氢及防治的科学问题出发,介绍了硫化氢对环境、设备和人员的严重危害,综述了不同自然环境中硫化氢产生的机制,指出了微生物介导硫酸盐还原作用是循环水管道中硫化氢产生的关键,并根据国内外研究进展对硫化氢的防治策略进行了展望.本文对于科学防控火电厂循环水管道产生硫化氢等有毒有害气体的风险具有重要的指导意义.
关键词(KeyWords):
滨海火电厂;;硫化氢;;防控措施
22 | 0 | 16 |
下载次数 | 被引频次 | 阅读次数 |
参考文献
[1]尤洋洋.“双碳”目标下火力发电现状与发展方向探析[J].大众用电,2023,38:29-30.
[2]李建.影响滨海电厂冷却水出口泡沫产生的因素及控制措施[J].广东化工,2021,48:128-150.
[3]何萍.滨海电厂循环冷却水系统海生物预防性控制运行探讨[J].应用能源技术,2016,12:30-32.
[4]张文帅.滨海火电厂海水循环冷却系统污损生物防除研究与实践[J].盐科学与化工,2021,50:40-42.
[5]张际标,孙省利,陈春亮,等.滨海电厂海水冷却系统的生物附着和控制设计[C].第十四届全国缓蚀剂学术讨论会论文集,2006:240-244.
[6] ZHANG Z,ZHANG C,YANG Y,et al. A review of sulfate-reducing bacteria:Metabolism,influencing factors and application in wastewater treatment[J]. Journal of Cleaner Production,2022,376:134109.
[7]胥文敬.城市污水排水系统中H2S的溢出规律研究[D].兰州:兰州理工大学,2014.
[8]杨冬冬,陈国明,付建民,等.海洋平台含硫化氢天然气泄漏爆炸连锁事故后果动态评估[J].化工进展,2021,40:6393-6400.
[9]李涛,张敏,杜燮祎,等. GBZ1-2010《工业企业设计卫生标准》解读[J].工业卫生与职业病,2010,36:193-196.
[10]王峰,高梦杰.湿硫化氢环境HSLA钢焊接接头应力腐蚀开裂的研究进展[J].材料保护,2023,56:153-162.
[11] JIANG G,SUN J,SHARMA K R,et al. Corrosion and odor management in sewer systems[J]. Current Opinion in Biotechnology,2015,33:192-197.
[12]蔡如迪,江萍.硫化氢对循环冷却水系统的危害及对策[J].工业水处理,2001,21:40-42.
[13] LAMBERT T W,GOODWIN V M,STEFANI D,et al. Hydrogen sulfide(H2S)and sour gas effects on the eye. A historical perspective[J]. Science of the Total Environment,2006,367:1-22.
[14] DOUJAIJI B,AL-TAWFIQ J A. Hydrogen sulfide exposure in an adult male[J]. Annals of Saudi Medicine,2010,30:76-80.
[15]王亚鑫,吴玉,张洪琳,等.微生物硫代谢及其驱动下建立的生物生态关系[J].微生物学报,2022,62:930-948.
[16] PESTER M,KNORR K H,FRIEDRICH M W,et al. Sulfate-reducing microorganisms in wetlandsfameless actors in carbon cycling and climate change[J]. Frontiers in Microbiology,2012,3:72.
[17]胡德蓉,林钦.硫酸盐还原菌(SRB)的生态特性及其检测方法研究进展[J].南方水产,2007,3:67-72.
[18]朱光有,费安国,赵杰,等. TSR成因H2S的硫同位素分馏特征与机制[J].岩石学报,2014,30:3772-3786.
[19] AMRANI,A. Organosulfur compounds:molecular and isotopic evolution from biota to oil and gas[J].Annual Review of Earth and Planetary Sciences,2014,42:733-768.
[20] LI P, HAO F, GUO X, et al. Origin and distribution of hydrogen sulfide in the Yuanba gas field,Sichuan Basin,Southwest China[J]. Marine and Petroleum Geology,2016,75:220-239.
[21] CLAPHAM M E,RENNE P R. Flood basalts and mass extinctions[J]. Annual Review of Earth and Planetary Sciences,2019,47:275-303.
[22]张立阳.基于高效脱除硫化氢与杂多化合物循环利用的绿色脱硫体系研究[D].济南:山东大学,2021.
[23] ZAN F,LIANG Z,JIANG F,et al. Effects of food waste addition on biofilm formation and sulfide production in a gravity sewer[J]. Water Research. 2019,157:74-82.
[24] LIANG Z S,SUN J,CHAU H K,et al. Experimental and modelling evaluations of sulfide formation in a mega-sized deep tunnel sewer system and implications for sewer managemen t[J]. Environment International,2019,131:105011.
[25] ZHANG L,QIU Y Y,SHARMA K R,et al. Hydrogen sulfide control in sewer systems:A critical review of recent progress[J]. Water Research,2023,240:120046.
[26] ZHANG Q Q,JIAN S L,LI K M,et al. Community structure of bacterioplankton and its relationship with environmental factors in the upper reaches of the Heihe River in Qinghai Plateau[J]. Environmental Microbiology,2021,23:1210-1221.
[27] KARNACHUK O V,RUSANOV I I,PANOVA I A,et al. Microbial sulfate reduction by Desulfovibrio is an important source of hydrogen sulfide from a large swine finishing facility[J]. Scientific Reports,2021,10720:1-11.
[28]徐警卫.重力流排水管道内碳硫比对甲烷和硫化氢产生以及碳转化的影响[D].重庆:重庆大学,2017.
[29] SHI X,GAO G,TIAN J,et al. Symbiosis of sulfate-reducing bacteria and methanogenic archaea in sewer systems[J]. Environment International,2020,143:105923.
[30]任俊豪.污水管网硫化氢与甲烷生成的水力影响机制研究[D].西安:西安建筑科技大学,2022.
[31] VO H T,IMAI T,FUKUSHIMA M,et al. Enhancing the biological oxidation of H2S in a sewer pipe with highly conductive concrete and electricity-producing bacteria[J]. International Journal of Environmental Research and Public Health,2023,20:1459.
[32] ZHANG L,KELLER J,YUAN Z. Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing[J]. Water Research,2009,43:4123-4132.
[33]王怡,朱杜洁,王社平,等.投加铁盐对排水管道水质影响及控制有害气体的研究[J].中国给水排水,2012,28:33-36.
[34] GUTIERREZ O,MOHANAKRISHNAN J,SHARMA KR,et al. Evaluation of oxygen injection as a means of controlling sulfide production in a sewer system[J]. Water Research,2008,42:4549-4561.
[35] MOHANAKRISHNAN J,GUTIERREZ O,MEYER R L,et al. Nitrite effectively inhibits sulfide and methane production in a laboratory scale sewer reactor[J]. Water Research,2008,42:3961-3971.
[36] GUTIERREZ O,PARK D,SHARMA K R,et al. Effects of long-term pH elevation on the sulfatereducing and methanogenic activities of anaerobic sewer biofilms[J]. Water Research, 2009, 43:2549-2557.
[37]许小冰,王怡,王社平,等.城市排水管道中有害气体控制的国内外研究现状[J].中国给水排水,2012,28:9-12.
[38] BRAHMI A E L,ABDERAFI S. Hydrogen sulfide removal from wastewater using hydrogen peroxide in-situ treatment:Case study of Moroccan urban sewers[J]. Materials Today:Proceedings,2021,45:7424-7427.
[2]李建.影响滨海电厂冷却水出口泡沫产生的因素及控制措施[J].广东化工,2021,48:128-150.
[3]何萍.滨海电厂循环冷却水系统海生物预防性控制运行探讨[J].应用能源技术,2016,12:30-32.
[4]张文帅.滨海火电厂海水循环冷却系统污损生物防除研究与实践[J].盐科学与化工,2021,50:40-42.
[5]张际标,孙省利,陈春亮,等.滨海电厂海水冷却系统的生物附着和控制设计[C].第十四届全国缓蚀剂学术讨论会论文集,2006:240-244.
[6] ZHANG Z,ZHANG C,YANG Y,et al. A review of sulfate-reducing bacteria:Metabolism,influencing factors and application in wastewater treatment[J]. Journal of Cleaner Production,2022,376:134109.
[7]胥文敬.城市污水排水系统中H2S的溢出规律研究[D].兰州:兰州理工大学,2014.
[8]杨冬冬,陈国明,付建民,等.海洋平台含硫化氢天然气泄漏爆炸连锁事故后果动态评估[J].化工进展,2021,40:6393-6400.
[9]李涛,张敏,杜燮祎,等. GBZ1-2010《工业企业设计卫生标准》解读[J].工业卫生与职业病,2010,36:193-196.
[10]王峰,高梦杰.湿硫化氢环境HSLA钢焊接接头应力腐蚀开裂的研究进展[J].材料保护,2023,56:153-162.
[11] JIANG G,SUN J,SHARMA K R,et al. Corrosion and odor management in sewer systems[J]. Current Opinion in Biotechnology,2015,33:192-197.
[12]蔡如迪,江萍.硫化氢对循环冷却水系统的危害及对策[J].工业水处理,2001,21:40-42.
[13] LAMBERT T W,GOODWIN V M,STEFANI D,et al. Hydrogen sulfide(H2S)and sour gas effects on the eye. A historical perspective[J]. Science of the Total Environment,2006,367:1-22.
[14] DOUJAIJI B,AL-TAWFIQ J A. Hydrogen sulfide exposure in an adult male[J]. Annals of Saudi Medicine,2010,30:76-80.
[15]王亚鑫,吴玉,张洪琳,等.微生物硫代谢及其驱动下建立的生物生态关系[J].微生物学报,2022,62:930-948.
[16] PESTER M,KNORR K H,FRIEDRICH M W,et al. Sulfate-reducing microorganisms in wetlandsfameless actors in carbon cycling and climate change[J]. Frontiers in Microbiology,2012,3:72.
[17]胡德蓉,林钦.硫酸盐还原菌(SRB)的生态特性及其检测方法研究进展[J].南方水产,2007,3:67-72.
[18]朱光有,费安国,赵杰,等. TSR成因H2S的硫同位素分馏特征与机制[J].岩石学报,2014,30:3772-3786.
[19] AMRANI,A. Organosulfur compounds:molecular and isotopic evolution from biota to oil and gas[J].Annual Review of Earth and Planetary Sciences,2014,42:733-768.
[20] LI P, HAO F, GUO X, et al. Origin and distribution of hydrogen sulfide in the Yuanba gas field,Sichuan Basin,Southwest China[J]. Marine and Petroleum Geology,2016,75:220-239.
[21] CLAPHAM M E,RENNE P R. Flood basalts and mass extinctions[J]. Annual Review of Earth and Planetary Sciences,2019,47:275-303.
[22]张立阳.基于高效脱除硫化氢与杂多化合物循环利用的绿色脱硫体系研究[D].济南:山东大学,2021.
[23] ZAN F,LIANG Z,JIANG F,et al. Effects of food waste addition on biofilm formation and sulfide production in a gravity sewer[J]. Water Research. 2019,157:74-82.
[24] LIANG Z S,SUN J,CHAU H K,et al. Experimental and modelling evaluations of sulfide formation in a mega-sized deep tunnel sewer system and implications for sewer managemen t[J]. Environment International,2019,131:105011.
[25] ZHANG L,QIU Y Y,SHARMA K R,et al. Hydrogen sulfide control in sewer systems:A critical review of recent progress[J]. Water Research,2023,240:120046.
[26] ZHANG Q Q,JIAN S L,LI K M,et al. Community structure of bacterioplankton and its relationship with environmental factors in the upper reaches of the Heihe River in Qinghai Plateau[J]. Environmental Microbiology,2021,23:1210-1221.
[27] KARNACHUK O V,RUSANOV I I,PANOVA I A,et al. Microbial sulfate reduction by Desulfovibrio is an important source of hydrogen sulfide from a large swine finishing facility[J]. Scientific Reports,2021,10720:1-11.
[28]徐警卫.重力流排水管道内碳硫比对甲烷和硫化氢产生以及碳转化的影响[D].重庆:重庆大学,2017.
[29] SHI X,GAO G,TIAN J,et al. Symbiosis of sulfate-reducing bacteria and methanogenic archaea in sewer systems[J]. Environment International,2020,143:105923.
[30]任俊豪.污水管网硫化氢与甲烷生成的水力影响机制研究[D].西安:西安建筑科技大学,2022.
[31] VO H T,IMAI T,FUKUSHIMA M,et al. Enhancing the biological oxidation of H2S in a sewer pipe with highly conductive concrete and electricity-producing bacteria[J]. International Journal of Environmental Research and Public Health,2023,20:1459.
[32] ZHANG L,KELLER J,YUAN Z. Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing[J]. Water Research,2009,43:4123-4132.
[33]王怡,朱杜洁,王社平,等.投加铁盐对排水管道水质影响及控制有害气体的研究[J].中国给水排水,2012,28:33-36.
[34] GUTIERREZ O,MOHANAKRISHNAN J,SHARMA KR,et al. Evaluation of oxygen injection as a means of controlling sulfide production in a sewer system[J]. Water Research,2008,42:4549-4561.
[35] MOHANAKRISHNAN J,GUTIERREZ O,MEYER R L,et al. Nitrite effectively inhibits sulfide and methane production in a laboratory scale sewer reactor[J]. Water Research,2008,42:3961-3971.
[36] GUTIERREZ O,PARK D,SHARMA K R,et al. Effects of long-term pH elevation on the sulfatereducing and methanogenic activities of anaerobic sewer biofilms[J]. Water Research, 2009, 43:2549-2557.
[37]许小冰,王怡,王社平,等.城市排水管道中有害气体控制的国内外研究现状[J].中国给水排水,2012,28:9-12.
[38] BRAHMI A E L,ABDERAFI S. Hydrogen sulfide removal from wastewater using hydrogen peroxide in-situ treatment:Case study of Moroccan urban sewers[J]. Materials Today:Proceedings,2021,45:7424-7427.
基本信息:
DOI:
中图分类号:TM621
引用信息:
[1]郑耿桦,尤亮,冯庭有等.滨海火电厂循环水管道硫化氢气体的产生、危害及预防措施[J].汕头大学学报(自然科学版),2024,39(03):73-80.
基金信息:
华能集团科技项目(HNKJ22-H68)“滨海电厂海水系统硫化氢生成机理与防治策略研究”
暂无数据