174 | 0 | 48 |
下载次数 | 被引频次 | 阅读次数 |
6D位姿是目标物体基于平面矢量和旋转矢量的位置和姿态.基于单目RGB相机进行6D位姿估计的传统方法由于标记点少、识别率较低等原因,易导致测量精度不高.为提高物体位姿测量的精度,论文提出了一种基于特征标记的物体6D位姿测量方法.首先,设计一种能提供更多标记点且识别率高的特征标记,并通过相机识别被测物体上的特征标记获得3D-2D点对.其次,基于相机成像原理设计物体6D位姿测量系统与方法.然后,建立求解工件位姿变化的旋转矩阵和位移矩阵模型.最后,基于所建立的旋转矩阵模型与欧拉角之间的关系求解工件6D位姿.实验结果表明,在0-170 mm位移范围内,沿X、Y、Z轴位移测量误差小于0.5 mm;在0-30°旋转范围内,其绕X、Y轴旋转角度测量误差小于0.8°;在0-45°旋转范围内,其绕Z轴旋转角度测量误差小于0.8°;测量物体绕X、Y轴旋转角度误差耗时小于1.5 s,绕Z轴旋转角度误差耗时小于2 s;测量物体沿X、Z轴位移误差耗时小于2 s,沿Z轴位移误差耗时小于2.5 s;能够满足实际生产要求.实验结果检验了论文所提方法的有效性,可用于实际生产环境中.
Abstract:The 6D pose of an object is its position and attitude based on planar vectors and rotation vectors. Traditional methods for estimating the 6D pose of an object using a monocular RGB camera often result in low measurement accuracy due to reasons such as a lack of markers and low recognition rates. To improve the accuracy of object pose measurement, a feature marker-based method for measuring the 6D pose of an object is proposed. First, a feature marker that can provide more markers and has a high recognition rate is designed. 3D-2D point pairs are obtained by recognizing the feature markers on the object to be measured with the camera.Second, a method for measuring the 6D pose of an object is designed based on the principle of camera imaging. Then, models of rotation matrices and displacement matrices for solving the pose changes of the workpiece are established. Finally, the 6D pose of the workpiece is solved based on the relationship between the established rotation matrix model and Euler angles.Experimental results show that within a displacement range of 0-170 mm, the measurement errors of displacement along the X, Y, and Z axes are less than 0.5 mm; within a rotation range of 0-30°, the measurement errors of rotation angles around the X and Y axes are less than 0.8°;within a rotation range of 0-45°, the measurement error of rotation angle around the Z axis is less than 0.8°; the time consumed for measuring the rotation angle error of the object around the X and Y axes is less than 1.5 s, and the time consumed for measuring the rotation angle error around the Z axis is less than 2 s; the time consumed for measuring the displacement error of the object along the X and Z axes is less than 2 s, and the time consumed for measuring the displacement error along the Z axis is less than 2.5 s; it can meet the actual production requirements. The experimental results verify the effectiveness of the proposed method, which can be used in actual production environments.
[1]闵永智,陶佳,任维卓.基于特征点位置校正的靶标位姿测量方法[J].自动化学报,2020,46(3):509-517.
[2]吴福培,魏亚辉,李庆华,等.高速轨道超声成像伤损检测及其参数学习方法[J].计算机集成制造系统,2021,27(3):747-756.
[3] FISCHLER M A,BOLLES R C. Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM,1981,24(6):381-395.
[4] LU C P,HAGER G D,MJOLSNESS E. Fast and globally convergent pose estimation from video images[J]. IEEE Computer Society,2000,22(6):610-622.
[5] LI S,XU C. A robust O(n)solution to the perspective-n-point problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2012,34(7):1444-1450.
[6] NAIMARK L,FOXLIN E. Circular data matrix fiducial system and robust image processing for a wearable vision-inertial self-tracker[C]. Darmstadt:Proceedings International Symposium on Mixed and Augmented Reality,2002:27-36.
[7] GARRIDO-JURADO S,MU?OZ-SALINAS R,MADRID-CUEVAS F J,et al. Automatic generation and detection of highly reliable fiducial markers under occlusion[J]. Pattern Recognition,2014,47(6):2280-2292.
[8]许允喜,蒋云良,陈方.基于点和直线段对应的扩展正交迭代位姿估计算法[J].光学学报,2009,29(11):3129-3135.
[9]许允喜,蒋云良,陈方.多摄像机系统位姿估计的广义正交迭代算法[J].光学学报,2009,29(1):72-77.
[10]苗锡奎,朱枫,郝颖明,等.基于特征点不确定性加权误差的位姿估计新方法[J].光电子.激光,2012,23(7):1348-1355.
[11]李鑫,龙古灿,刘进博,等.相机位姿估计的加速正交迭代算法[J].光学学报,2015,35(1):266-273.
[12]周润,张征宇,黄叙辉.相机位姿估计的加权正交迭代算法[J].光学学报,2018,38(5):193-199.
[13]张慧娟,熊芝,劳达宝,等.基于EPNP算法的单目视觉测量系统研究[J].红外与激光工程,2019,48(5):190-195.
[14]杨志伟,王良明,张喜峰,等.双高速摄像机交汇的高旋弹丸位姿估计算法及误差分析[J].国防科技大学学报,2022,44(2):71-79.
[15]尚砚娜,石晶欣,赵岩,等.大型结构体裂缝检测中的定位方法[J].仪器仪表学报,2017,38(3):681-688.
[16]李成龙,钟凡,秦学英.基于3维模型的单视图不规则物体定位[J].计算机辅助设计与图形学学报,2015,27(1):68-75.
[17]刘进博,郭鹏宇,李鑫,等.基于点对应的相机姿态估计算法性能评价[J].光学学报,2016,36(5):121-130.
[18]李航宇,张志龙,李楚为,等.基于视觉的目标位姿估计综述[C].高分辨率对地观测学术联盟.第七届高分辨率对地观测学术年会论文集,2020:14.
[19]刘晨阳,郑龙江,侯培国.一种快速加权迭代位姿估计法[J].激光与光电子进展,2022,59(18):1815019.
[20]陶孟卫,姚宇威,元海文,等.无人机自主降落视觉标识设计及位姿测量方法[J].仪器仪表学报,2023,43(5):155-164.
[21]邢加伟,田海峰,王芳.单目相机物体位姿估计方法研究[J].导航定位与授时,2019,6(4):71-77.
[22]汪佳宝,张世荣,周清雅.基于视觉EPnP加权迭代算法的三维位移实时测量[J].仪器仪表学报,2020,41(2):166-175.
基本信息:
DOI:
中图分类号:TP391.41
引用信息:
[1]周旭,吴福培,鲁晓会等.基于特征标记的物体6D位姿测量方法[J].汕头大学学报(自然科学版),2024,39(03):12-23.
基金信息:
国家自然科学基金(61573233); 广东省自然科学基金(2021A1515010661); 广东省普通高校重点领域专项(2020ZDZX2005)