nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 02, v.40 43-54
28.3 L/min激光尘埃粒子计数传感器的研制
基金项目(Foundation): 安徽省高校科研重点项目(2023AH050944)
邮箱(Email):
DOI:
摘要:

基于Mie散射理论,研制了28.3 L/min激光尘埃粒子计数传感器.首先,通过非球面透镜和柱面透镜对激光光束进行整形,在光敏区域竖直方向上得到了近似平顶分布的狭长光斑.其次,将Mie散射理论与几何光学相结合设计了散射光路.然后,参考拉瓦尔喷管的原理设计了采样气路的结构,并使用流体动力学软件Ansys Fluent对微粒在光敏区域的空间分布进行了仿真验证.最后,使用聚苯乙烯标准微粒对传感器性能进行了测试.结果显示,发生0.5μm粒子时,计数效率达到了88.5%至95%.粒径分布误差测量,发生0.4μm粒子时,N0.5μm/N0.3μm范围在8%至11%;发生0.6μm粒子时,N0.5μm/N0.3μm范围在82.5%至88%.符合JJF1190-2008标准要求.

Abstract:

Based on Mie scattering theory, a 28.3 L/min laser dust particle counter was developed.First, the laser beam was shaped using aspherical and cylindrical lenses to obtain a narrow,approximately flat-top beam in the vertical direction of the photosensitive area. Second, the scattering optical path was designed by combining Mie scattering theory with geometrical optics.Then, the sampling airflow structure was designed based on the Laval nozzle principle, and the spatial distribution of particles in the photosensitive area was simulated and verified using the fluid dynamics software Ansys Fluent. Finally, the performance of the sensor was tested using polystyrene standard particles. The results showed that when 0.5 μm particles were generated,the counting efficiency reached 88.5% to 95%. For particle size distribution error measurement,when 0.4 μm particles were generated, the N0.5μm/N0.3μm ratio ranged from 8% to 11%, and when0.6 μm particles were generated, the N0.5μm/N0.3μm ratio ranged from 82.5% to 88%. These results meet the requirements of the JJF1190-2008 standard.

参考文献

[1]NJALSSON T,NOVOSSELOV I.Design and optimization of a compact low-cost optical particle sizer[J].Journal of Aerosol Science,2018,119:1-12.

[2]ZHAN B C L.The design of a small flow optical sensor of particle counter[J].Optics Communications,2018,407:296-300.

[3]TRAMPE A,NIERHOFF T,SEMLEIT D,et al.Digital signal processing for optical particle counters in order to improve the signal-to-noise ratio[J].Aerosol Science&Technology,1996,25(4):399-410.

[4]RENARD J B,DULAC F,BERTHET G,et al.LOAC:a small aerosol optical counter/sizer for groundbased and balloon measurements of the size distribution and nature of atmospheric particles-Part 2:First results from balloon and unmanned aerial vehicle flights[J].Atmospheric Measurement Techniques,2016,9(8):3673-3686.

[5]NAGY A,SZYMANSKI W W,GáL P,et al.Numerical and experimental study of the performance of the dual wavelength optical particle spectrometer(DWOPS)[J].Journal of Aerosol Science,2007,38(4):467-478.

[6]JAENICKE R.The optical particle counter:cross-sensitivity and coincidence[J].Journal of Aerosol Science,1972,3(2):95-111.

[7]LIU B Y H,BERGLUND R N,AGARWAL J K.Experimental studies of optical particle counters[J].Atmospheric Environment,1974,8(7):717-732.

[8]吴丽霞.基于尘埃粒子计数器信号幅度分布函数的叠加及应用[D].南京:南京理工大学,2010.

[9]杨娟,顾芳,卞保民,等.尘埃粒子计数器信号传输特性研究[J].激光技术,2008(3):255-258.

[10]LEE S,KWON J,PARK,D.Optimized replication of adc-based particle counting algorithm with reconfigurable multi-variables in pseudo-supervised digital twining of reference dust sensor systems[J].Sensors,2023,23(12):5557.

[11]KARCZ S,SKRABALAK G,BRUDNIK A G G.Dust particle counter for powder bed fusion process[J].Sensors,2022,22(19):7614.

[12]ZHENG Y C,WU G,CHEN Y S,et al.Design of a high counting efficiency sensor for 1.0 cubic feet per minute laser particle counter[J].Review of Scientific Instruments,2023,94(9):095010.

[13]LAI J,ZOU T,WANG C,et al.Simulation on the particle flow in laser airborne particle counting sensor[C]//Advanced Sensor Systems and Applications VI.International Society for Optics and Photonics,2014.

[14]ZHANG C,WANG D Q,ZHU R,et al.A miniature aerosol sensor for detecting polydisperse airborne ultrafine particles[J].Sensors,2017,17(4):929.

[15]SHARK L K,YU C.Denoising by optimal fuzzy thresholding in wavelet domain[J].Electronics Letters,2000,36(6):581-582.

[16]PINNICK R G,ROSEN J M,HOFMANN D J.Measured light-scattering properties of individual aerosol particles compared to mie scattering theory[J].Applied Optics,1973,12(1):37-41.

[17]XU R,OUYANG L,SHAIK R,et al.Rapid detection of microparticles using a microfluidic resistive pulse sensor based on bipolar pulse-width multiplexing[J].Biosensors,2023,13(7):721.

基本信息:

DOI:

中图分类号:TP212

引用信息:

[1]杨龙,吴过,何锦涛等.28.3 L/min激光尘埃粒子计数传感器的研制[J].汕头大学学报(自然科学版),2025,40(02):43-54.

基金信息:

安徽省高校科研重点项目(2023AH050944)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文