2025 01 v.40 64-71
汕头软黏土在不同应力路径下的强度试验研究
基金项目(Foundation):
汕头大学科研启动基金(NTF21017)
邮箱(Email):
22zjliu@stu.edu.cn;
DOI:
中文作者单位:
汕头大学工学院;汕头市公路事务中心;
摘要(Abstract):
为探究汕头地区软黏土在经基坑开挖卸荷作用下的强度特征,利用应力路径三轴仪模拟原状软黏土在常规固结、超固结和卸荷路径下的力学响应规律.结果表明,汕头软粘土在不同固结压力下均出现应变软化现象,在低固结压力下,应变软化程度并不明显,在高固结压力条件下,应变软化现象明显,高固结压力会破坏土粒之间的胶结作用,从而导致应变软化程度增大.在不同固结压力下的应力-应变曲线规律相似,当轴向应变处于0~5%时,偏应力似线性增长;当轴向应变达到5%左右时,偏应力增长速率减小,且出现应力峰值所对应的轴向应变均处于8%~10%.基于上述结果,可为确定该地区软土峰值强度所对应的临界应变提供依据,从而更好地指导实际工程.
关键词(KeyWords):
汕头软黏土;应力路径;卸荷;孔隙水
18 | 0 | 3 |
下载次数 | 被引频次 | 阅读次数 |
参考文献
[1]陈立国,吴昊天,陈晓斌,等.洞庭湖冲湖积软土次固结效应研究[J].应用力学学报,2020,37(6):2362-2369+2692-2693.
[2] LAMBE T W. Stress path method[J]. Journal of the Soil Mechanics and Foundation Division,1967,93(SM6):309-331.
[3] CALLISTO L,CALABRESI G. Mechanical behaviour of a natural softclay[J]. Geotechnique,1998,48(4):495-513.
[4] LAMBE T W, MARR W A. Stress path method[A]. Second Edition Journal of the Geotechnical Engineering Division,ASCE,1979(GT6):73-81.
[5]孙岳崧,濮家骝,李广信.不同应力路径对砂土应力-应变关系的影响[J].岩土工程学报,1987,9(6):78-88.
[6] MALANRAKI V,TOLL D G. Triaxial tests on weakly bonded soil with changes in stress path[J]. Journal of Geotechnical and Geoenvironmental Engineering,2001,127(3):282-291.
[7] CALLISTO L,RAMPELLO S. Shear strength and small-strain stiffness of a natural clayundergeneral stress conditions[J]. Geotechnique,2002,52(8):547-560.
[8]何世秀,韩高升,庄心善,等.基坑开挖卸荷土体变形的试验研究[J].岩土力学,2003(1):17-20.
[9] LIU E,WANG S,ZHOU C, et al. Mechanical properties of artificial structured soils under a conventional drained loading-unloading-reloading stress path[J]. International Journal of Civil Engineering,2018,16(4):383-393.
[10]孔令伟,臧濛,郭爱国,等.湛江强结构性黏土强度特性的应力路径效应[J].岩土力学,2015,36(S1):19-24.
[11] ZHU J G,YIN J H. Strain-rate-dependent stress-strain behavior of overconsolidated Hong Kong marine clay[J]. Canadian Geotechnical Journal,2000,37(6):1272-1282.
[12]高彬,陈筠,杨恒,等.红黏土在不同应力路径下的力学特性试验研究[J].地下空间与工程学报,2018,14(5):1202-1212.
[13]杨爱武,雷博.剪切速率对结构性吹填软土力学特性影响试验研究[J].工程地质学报,2015,23(1):7-12.
[14]蒋明镜,彭立才,朱合华,等.珠海海积软土剪切带微观结构试验研究[J].岩土力学,2010,31(7):2017-2023+2029.
[15]蒋明镜,沈珠江.结构性粘土剪切带的微观分析[J].岩土工程学报,1998,20(2):102-108.
[16]黄茂松,王卫东,郑刚.软土地下工程与深基坑研究进展[J].土木工程学报,2012,45(6):146-161.
[2] LAMBE T W. Stress path method[J]. Journal of the Soil Mechanics and Foundation Division,1967,93(SM6):309-331.
[3] CALLISTO L,CALABRESI G. Mechanical behaviour of a natural softclay[J]. Geotechnique,1998,48(4):495-513.
[4] LAMBE T W, MARR W A. Stress path method[A]. Second Edition Journal of the Geotechnical Engineering Division,ASCE,1979(GT6):73-81.
[5]孙岳崧,濮家骝,李广信.不同应力路径对砂土应力-应变关系的影响[J].岩土工程学报,1987,9(6):78-88.
[6] MALANRAKI V,TOLL D G. Triaxial tests on weakly bonded soil with changes in stress path[J]. Journal of Geotechnical and Geoenvironmental Engineering,2001,127(3):282-291.
[7] CALLISTO L,RAMPELLO S. Shear strength and small-strain stiffness of a natural clayundergeneral stress conditions[J]. Geotechnique,2002,52(8):547-560.
[8]何世秀,韩高升,庄心善,等.基坑开挖卸荷土体变形的试验研究[J].岩土力学,2003(1):17-20.
[9] LIU E,WANG S,ZHOU C, et al. Mechanical properties of artificial structured soils under a conventional drained loading-unloading-reloading stress path[J]. International Journal of Civil Engineering,2018,16(4):383-393.
[10]孔令伟,臧濛,郭爱国,等.湛江强结构性黏土强度特性的应力路径效应[J].岩土力学,2015,36(S1):19-24.
[11] ZHU J G,YIN J H. Strain-rate-dependent stress-strain behavior of overconsolidated Hong Kong marine clay[J]. Canadian Geotechnical Journal,2000,37(6):1272-1282.
[12]高彬,陈筠,杨恒,等.红黏土在不同应力路径下的力学特性试验研究[J].地下空间与工程学报,2018,14(5):1202-1212.
[13]杨爱武,雷博.剪切速率对结构性吹填软土力学特性影响试验研究[J].工程地质学报,2015,23(1):7-12.
[14]蒋明镜,彭立才,朱合华,等.珠海海积软土剪切带微观结构试验研究[J].岩土力学,2010,31(7):2017-2023+2029.
[15]蒋明镜,沈珠江.结构性粘土剪切带的微观分析[J].岩土工程学报,1998,20(2):102-108.
[16]黄茂松,王卫东,郑刚.软土地下工程与深基坑研究进展[J].土木工程学报,2012,45(6):146-161.
基本信息:
DOI:
中图分类号:TU447
引用信息:
[1]刘智军,杨永雨,王振等.汕头软黏土在不同应力路径下的强度试验研究[J].汕头大学学报(自然科学版),2025,40(01):64-71.
基金信息:
汕头大学科研启动基金(NTF21017)