安徽工程大学机械与汽车工程学院;
填充式液态金属电路是解决传统液态金属电路高电阻、低导热和可靠性不足问题的关键,其中填充式液态金属电路的关键在于基体中微流道的构建和液态金属复合物的组分控制.本文总结了液态金属的物化性质、填充式液态金属电路的制备方式以及可穿戴设备、人机交互和软体机器人领域的应用,重点介绍了微流管注入法、基体中微流管构建技术、可穿戴设备的应用,探讨液态金属柔性导线的制备方式,揭示其在应用中存在的局限性,并提出相应的优化方向,为柔性电子器件向高功率、高可靠性及集成度方向发展提供技术参考.
137 | 0 | 47 |
下载次数 | 被引频次 | 阅读次数 |
[1] JANG S,KIM C,PARK J J,et al. A high aspect ratio serpentine structure for use as a strain-insensitive,stretchable transparent conductor[J]. Small,2018(8):1702818.
[2] KYUNG-IN J,KAN L,UK H C,et al. Self-assembled three dimensional network designs for soft electronics[J]. Nat Commun,2017,8(1):15894.
[3] YU Y,LIU F,ZHANG R,et al. Suspension 3D printing of liquid metal into self-healing hydrogel[J].Adv Mater Technol,2017,2(1):1700173.
[4] BOLEY J W,WHITE E L,AND T C C,et al. Direct writing of gallium-indium alloy for stretchable electronics[J]. Adv Funct Mater,2014,24:3501-3507.
[5] ZHOU N,JIANG B,HE X,et al. A superstretchable and ultrastable liquid metal-elastomer wire for soft electronic devices[J]. ACS Appl Mater Interfaces,2021,13(16):19254-19262.
[6] ZHENG Y,HE Z Z,YANG J,et al. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism[J]. Sci Rep,2014,4:4588.
[7] JIANG C J,GOU R. Liquid metal-based paper electronics:Materials,methods,and applications[J].Sci China Technol Sci,2023,66(6):1595-1616.
[8]王磊,刘静.液态金属印刷电子墨水研究进展[J].影像科学与光化学,2014,32(4):382-392.
[9] DENG Y G,LIU J. Optimization and evaluation of a high-performance liquid metal CPU cooling product[J].IEEE Trans Compon Packaging Manuf Technol,2013,3(7):1171-1177.
[10] CAO J W,LI X,LIU Y W,et al. Liquid metal-based electronics for on-skin healthcare[J]. Biosensors,2023,13(1):84.
[11] ZHU L,WANG B,HANDSCHUH-WANG S,et al. Liquid metal-based soft microfluidics[J]. Small,2020,16(9):e1903841.
[12]张春小,崔丹丹,杜轶,等.镓基液态金属的结构与物性[J].自然杂志,2023,45(5):340-354.
[13]陆奔,李安敏,杨树靖,等.磁性镓基液态金属复合材料的研究进展[J].材料导报,2024,38(8):170-184
[14] SUJI C,IHN S H,DOKYOON K,et al. High-performance stretchable conductive nanocomposites:materials,processes,and device applications[J]. Chem Soc Rev,2018,48(6):1566-1595.
[15] TEVIS I D,NEWCOMB L B,THUO M. Synthesis of liquid core-shell particles and solid patchy multicomponent particles by shearing liquids into complex particles(SLICE)[J]. Langmuir,2014,30(47):14308-14313.
[16] DICKEY M D,CHIECHI R C,LARSEN R J,et al. Eutectic gallium-indium(EGaIn):a liquid metal alloy for the formation of stable structures in microchannels at room temperature[J]. Adv Funct Mater,2008,18(7):1097-1104.
[17] GUO R,TANG J,DONG S,et al. Flexible electronics:one-step liquid metal transfer printing:toward fabrication of flexible electronics on wide range of substrates[J]. Adv Mater Technol,2018,3(12):1800265.
[18]秦琴,刘宜伟,王永刚,等.基于液态金属的柔性导线的制备方法研究进展[J].电子元件与材料,2017,36(4):1-8.
[19] ZHANG K K,KONG S X,LI Y Y,et al. Soft elastomeric composite materials with skin-inspired mechanical properties for stretchable electronic circuits[J]. Lab on a Chip,2019,19(16):2709-2717.
[20] TANG L,MOU L,ZHANG W,et al. Large-scale fabrication of highly elastic conductors on a broad range of surfaces[J]. ACS Appl Mater Interfaces,2019,11(7):7138-7147.
[21] BOLEY W J,WHITE L E,KRAMER K R. Nanoparticles:mechanically sintered gallium-indiu m nanoparticles[J]. Adv Mater,2015,27(14):2270.
[22] LI Y,FENG S,CAO S,et al. Printable liquid metal microparticle ink for ultrastretchable electronics[J].ACS Appl Mater Interfaces,2020,12(45):50852-50859.
[23] SIN D,SINGH V K,BHUYAN P,et al. Ultrastretchable thermoand mechanochromic fiber with healable metallic conductivity[J]. Adv Electron Mater,2021,7(8):2100146.
[24]周酉林,刘宜伟,郭智勇,等.基于液态金属的可拉伸导线制备与性能研究[J].功能材料,2018,49(3):3152-3159.
[25] KHAN M R,EAKER C B,BOWDEN E F, et al. Giant and switchable surface activity of liquid metal via surface oxidation[J]. PNAS,2014,111(39):14047-14051.
[26] MA J,KRISNADI F,VONG M H,et al. Shaping a soft future:patterning liquid metals[J]. Adv Mater,2023,31(19):2205196.
[27] KHONDOKER M A H,OSTASHEK A,SAMEOTO D. Direct 3D printing of stretchable circuits via liquid metal Co-extrusion within thermoplastic filaments[J]. Adv Eng Mater,2019,21(7):1900060.
[28] WANG X P,LI L T,YANG X W,et al. Electrically induced wire-forming 3D printing technology of gallium-based low melting point metals[J]. Adv Mater Technol,2021,6(11):22100228.
[29] ZHU Z,PARK S H,MCALPINE C M. 3D printed deformable sensors[J]. Sci Adv,2020,6(25):eaba5575.
[30]刘通,诸葛祥群,蓝嘉昕,等.聚氨酯基压敏材料3D打印结合GaInSn液态金属导线制作柔性压力传感器的研究[J].材料导报,2022,36(15):186-190.
[31] QIU B,CHEN X,XU F,et al. Nanofiber self-consistent additive manufacturing process for 3D microfluidics[J]. Microsystems Nanoengineering,2022,8(1):102.
[32] HIRSCH A,MICHAUD H O,GERRATT A P,et al. Intrinsically stretchable biphasic(solid-liquid)thin metal films[J]. Adv Mater,2016,28(22),4507-4512.
[33] WANG H,XING W,CHEN S,et al. Liquid metal composites with enhanced thermal conductivity and stability using molecular thermal linker[J]. Adv Mater,2021,33(43):2103104.
[34] CHANG H,ZHANG P,GUO R,et al. Recoverable liquid metal paste with reversible rheological characteristic for electronics printing[J]. ACS Appl Mater Interfaces,2020,12(12):14125-14135.
[35] DONGKYUN C,PRIYANUJ B,DONGHO S,et al. Stretchable,soft,and variable stiffness elastomer foam with positive and negative piezoresistivity enabled by liquid metal inclusion[J]. Adv Mater Technol,2021,7(5):2101092.
[36]王曦宇,李科,王源升,等.聚合物/镓基液态金属复合材料的研究及应用进展[J].高分子材料科学与工程,2021,37(1):327-334.
[37] WANG J,LIU S,GURUSWAMY S,et al. Injection molding of free-standing,three-dimensional,all-metal terahertz metamaterials[J]. Advanced Optical Materials,2014,2(7):663-669.
[38] MURAKAMI K,ISANO Y,ASADA J,et al. Self-assembling bilayer wiring with highly conductive liquid metal and insulative ion gel layers[J]. Scientific Reports,2023,13(1):5929.
[39] LU X X,ZHANG M,WANG L,et al. Liquid metal fiber mat as a highly stable solid-state junction for inkjet-printed flexible reference electrodes[J]. Anal Chem,2022,94(18):6728-6735.
[40] YANG B W,YANG Z H,TANG L X. Recent progress in fiber-based soft electronics enabled by liquid metal[J]. Front Bioeng Biotechnol,2023,11:1178995.
[41] LOPES P A, PAOSANA H, DE ALMEIDA A T,et al. Hydroprinted electronics:ultrathin stretchable Ag-In-Ga E-Skin for bioelectronics and human-machine interaction[J]. ACS Appl Mater Interfaces,2018,10(45):38760-38768.
[42] WANG S L,NIE Y Y,ZHU H Y,et al. Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs[J]. Sci Adv,2022,8(13):eab15511.
[43] KIM S,SAITO M, WEI Y, et al. Stretchable and wearable polymeric heaters and strain sensors fabricated using liquid metals[J]. Sens Actuator A Phys,2023,355:114317.
[44] LAZZARI F,GAVIATI M,GARAVAGLIA L,et al. A liquid-metal wearable sensor for respiration monitoring:biomechanical requirements, modeling, design, and characterization[J]. IEEE Sens J,2023,23(6):6243-6253.
[45] TANG L X,YANG S J,ZHANG K,et al. Skin electronics from biocompatible in situ welding enabled by intrinsically sticky conductors[J]. Adv Sci,2022,9(23):2202043.
[46] PALLEAU E,REECE S,DESAI S C,et al. Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics[J]. Adv Mater,2013,25(11):201203921.
[47] ODOM A S,CHAYANUPATKUL S,BLAISZIK B J,et al. A self-healing conductive ink[J]. Adv Mater,2012,24(19):2578-2581.
[48] L I,Y Y,FANG T,ZHANG J X, et al. Ultrasensitive and ultrastretchable electrically self-healing conductors[J]. PNAS,2023,120(23):2300953120.
[49] CHEN S W,FAN S C,QI J M,et al. Ultrahigh strain-insensitive integrated hybrid electronics using highly stretchable bilayer liquid metal based conductor[J]. Adv Mater,2022,35(5):202208569.
[50] LAI Y C,LU H W,WU H M,et al. Elastic multifunctional liquid-metal fibers for harvesting mechanical and electromagnetic energy and as self-powered sensors[J]. Adv Energy Mater, 2021, 11(18):2100411.
[51] ZHANG X,AI J W,MA Z,et al. Liquid metal based stretchable magnetoelectric films and their capacity for mechanoelectrical conversion[J]. Adv Funct Mater,2020,30(45):2003680.
[52] FAN F R,TIAN Z Q,WANG Z L. Flexible triboelectric generator[J]. Nano Energy,2012,1(2):328-334.
[53] LUO J,FAN R F,JIANG T,et al. Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit[J]. Nano Res,2015,8(12):3934-3943.
[54] ZHENG L J,ZHU M M,WU B H,et al. Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing[J]. Sci Adv,2021,7(22):eabg4041.
[55]刘会聪,杨梦柯,袁鑫,等.液态金属柔性感知的人机交互软体机械手[J].中国机械工程,2021,32(12):1470-1478.
[56]陈怡,唱睿喆,曹雨冬,等.基于液态金属复合材料传感手环的手势意图识别系统[J].南京大学学报(自然科学版),2023,59(4):590-599.
[57] HU L,WANG H Z,WANG X F,et al. Magnetic liquid metals manipulated in the three-dimensional free space[J]. ACS Appl Mater Interfaces,2019,11:8685-8692.
[58] CHECHETKA S A,YU Y,ZHENG X,et al. Light-driven liquid metal nanotransformers for biomedical theranostics[J]. Nat Commun,2017,8(1):15432.
[59] SHENG L,ZHANG J,LIU J. Diverse transformations of liquid metals between different morphologies[J].Adv Mater,2014,26(34):6036-6042.
[60] ZHAO R,DAI H D,YAO H C. Liquid-metal magnetic soft robot with reprogrammable magnetization and stiffness[J]. IEEE Robot Autom Lett,2022,7(2),4535-4541.
[61]宗国歌.二氧化硅纳米粒子掺杂对PDMS性能影响研究[D].大连:大连理工大学,2016.
[62] GANESH Y,KUMAR S G,KARTIKEY S,et al. High thermally stable polyurethane nanocomposite foam containing polydimethyl siloxane and carbonaceous nanofillers[J]. Silicon,2022,15(6):2869-2878.
[63] SHEN Q C, JIANG M D, WANGR T, et al. Liquid metal-based soft, hermetic, and wirelesscommunicable seals for stretchable systems[J]. Science,2023,379:488-493.
基本信息:
DOI:
中图分类号:TN03
引用信息:
[1]王青,周洲,施伟等.液态金属柔性导线跨尺度制备技术和应用研究进展[J].汕头大学学报(自然科学版),2024,39(03):24-37.
基金信息:
安徽省自然科学基金(KZ22021055)